TUGAS BESAR


1. Pendahuluan

    Manusia adalah makhluk hidup yang setiap kegiatannya tak lepas dari kegitan konsumsi, karena selain dikenal sebagai makhluk sosial manusia juga dikenal sebagai makhluk yang tidak lepas dari kegiatan konsumsi/pakai. Berbeda dari makhluk konsumsi lain seperti hewan dan tumbuhan, manusia adalah makhluk konsumsi yang sangat aktif dikarena dapat dipastikan disetiap kegiatan yang dilakukan akan ada sesuatu yang akan dikonsumsi baik secara langsung maupun tidak langsung, dicernah atau hanya sekedar digunakan. Kegiatan yang dilakukan manusia terkadang menghabiskan atau menyisakan sesuatu yang dikonsumsinnya. Sisa-sisa dari kegiatan ini disebut sampah. Sampah yang paling umum ditemui dalam kehidupan sehari-hari adalah sampah organik dan anorganik.
              
2. Komponen

Ada beberapa komponen yang digunakan :
    a. HC-SR04 Ultrasonik Sensor
    b. Infrared Sensor
    c. Touch Sensor
    d. Breadboard
    e. Motor Servo
    f. LED
    g. Arduino 
    h. Liquid Crystal Display
    i. Potensiometer

3. Dasar Teori

a. HC-SR04 Ultrasonik Sensor

    Sensor ultrasonik HC-SR04 adalah suatu sensor yang fungsinya mengubah besaran fisis bunyi menjadi besaran listrik maupun sebaliknya. Fungsi sensor ultrasonik HC-SR04 biasa digunakan untuk mendeteksi objek yang ada di depannya dengan memanfaatkan gelombang ultrasonik.

Cara Kerja Sensor Ultrasonic HC-SR04 Arduino

    Sensor ultrasonik HC SR04 memiliki sepasang transduser ultrasonik yang berfungsi sebagai transmitter (memancarkan gelombang) dan receiver (menerima pantulan gelombang). Cara kerja sensor HC SR04 berawal dari gelombang ultrasonik berfrekuensi 40 kHz (sesuai osilator) yang dibangkitkan oleh piezoelektrik sebagai transmitter-nya. Kemudian gelombang yang terbentuk dipancarkan mengenai target. Hasil pantulan gelombang tersebut nantinya akan diterima oleh receiver piezoelektrik untuk dikalkulasikan waktu pengiriman dan waktu diterimanya gelombang pantul tersebut.

    Hasil pengalkulasian itulah nanti yang akan kita peroleh sebagai nilai jarak.Prinsip kerja sensor ultrasonik HC-SR04 kurang lebih hampir sama dengan contoh gambar kelelawar yang mendeteksi buah di depannya. Kira-kira bentuk ilustrasi cara kerja HC SR04 seperti ini.


Cara Kerja Sensor Ultrasonic HC-SR04 Arduino

    Rumus sensor ultrasonik diambil dari rumus kecepatan. Karena sudah diketahui kecepatan rambat bunyi berada di kisaran 340 m/s, maka rumus menghitung jarak sensor ultrasonik adalah:

S = 340.t / 2

Keterangan :

S= Jarak objek

t= Selisih waktu dipancarkan dan diterimanya gelombang


Spesifikasi Sensor Ultrasonik HC-SR04 Arduino

Jarak Deteksi2 - 300 cm
Akurasi Jarak3 mm
Tegangan Operasi5 Volt
Sudut Pantul< 15 derajat
Konsumsi Arus15 mA
Panjang4,5 cm
Lebar2 cm
Tinggi1,5 cm

Datasheet Sensor Ultrasonik HC-SR04

  • Pin Trig (Trigger), trigpin Arduino berfungsi untuk memicu pemancaran gelombang ultrasonik. Gelombang akan terpancarkan saat pin ini diberikan logika HIGH.
  • Pin Echo, berfungsi untuk mendeteksi pantulan gelombang ultrasonik apakah sudah diterima atau belum. Pin Echo bernilai HIGH jika gelombang pantulan belum diterima dan bernilai LOW jika pantulan sudah diterima.
  • Pin VCC, berfungsi untuk mengoneksikan sensor ke power supply 5 volt Arduino. Jadi kamu bisa langsung mengoneksikan pin VCC ke pin 5V di Arduino.
  • Pin GND, berfungsi untuk mengoneksikan sensor ke power supply ground. Sama dengan pin VCC, kamu juga bisa langsung menghubungkan pin GND ini ke pin GND Arduino
Komponen Sensor Ultrasonik HC-SR04
  • Piezoelektrik, fungsi dari komponen ini adalah mengubah energi listrik menjadi energi mekanik yang menghasilkan gelombang ultrasonik maupun sebaliknya.
  • Transmitter, yaitu komponen yang berfungsi untuk memancarkan gelombang ultrasonik yang dihasilkan oleh piezoelektrik ke objek yang ingin diukur jaraknya.
  • Receiver, berfungsi untuk menerima pantulan gelombang ultrasonik dari objek yang ingin diukur jaraknya.

b. Infrared Sensor

    Sensor IR adalah perangkat elektronik sederhana yang memancarkan dan mendeteksi radiasi IR untuk mengetahui objek/hambatan tertentu dalam jangkauannya. Beberapa fiturnya adalah sensor panas dan gerak. Sensor IR menggunakan radiasi infra merah dengan panjang gelombang antara 0,75 hingga 1000µm yang berada di antara wilayah spektrum elektromagnetik tampak dan gelombang mikro. Wilayah IR tidak terlihat oleh mata manusia. Spektrum inframerah dikategorikan menjadi tiga wilayah berdasarkan panjang gelombangnya yaitu Inframerah Dekat, Inframerah Tengah, Inframerah Jauh.
Daerah Panjang Gelombang Spektrum Inframerah :
  • Dekat IR – 0,75µm hingga 3 µm
  • Pertengahan IR – 3 µm hingga 6 µm
  • IR Jauh – > 6 µm
Prinsip Kerja Sensor Inframerah :
    Prinsip kerja dari sensor inframerah mirip dengan sensor pendeteksi gerakan. Dimana sensor akan mendeteksi pancaran gelombang mkiro inframerah yang dikeluarkan oleh suatu obyek. Sinar inframerah yang diterima oleh sensor akan diubah oleh sirkuit di dalam sensor menjadi sinyal keluaran digital yang dapat dihubungkan ke modul rangkaian mikrokontroller atau sistem alarm.

Elemen kunci dari Sistem Deteksi Inframerah adalah:

a. Pemancar IR

    IR Transmitter bertindak sebagai sumber radiasi IR. Menurut Hukum Radiasi Plank, setiap benda merupakan sumber radiasi IR pada suhu T di atas 0 Kelvin. Dalam kebanyakan kasus, radiator benda hitam, lampu tungsten, silikon karbida, laser inframerah, LED panjang gelombang inframerah digunakan sebagai sumber.

b. Media Tranmisi

    Seperti namanya, Media Transmisi menyediakan jalur untuk mencapai radiasi dari Pemancar IR ke Penerima IR. Vakum, atmosfer, dan serat optik digunakan sebagai media.

c. Penerima IR

    Umumnya penerima IR adalah dioda foto dan transistor foto. Mereka mampu mendeteksi radiasi infra merah. Oleh karena itu penerima IR juga disebut sebagai detektor IR. Berbagai penerima tersedia berdasarkan panjang gelombang, voltase dan paket. Pemancar dan Penerima IR dipilih dengan parameter yang cocok. Beberapa spesifikasi penerima yang menentukan adalah fotosensitifitas atau responsivitas, daya setara kebisingan dan deteksi.

Cara Kerja Sensor Inframerah :
  • Sumber IR (pemancar) digunakan untuk memancarkan radiasi dengan panjang gelombang yang dibutuhkan.
  • Radiasi ini mencapai objek dan dipantulkan kembali.
  • Radiasi yang dipantulkan terdeteksi oleh penerima IR.
  • Radiasi yang terdeteksi Penerima IR kemudian diproses lebih lanjut berdasarkan intensitasnya. Umumnya, output Penerima IR kecil dan amplifier digunakan untuk memperkuat sinyal yang terdeteksi.

Cara Kerja Sensor Inframerah

c. Touch Sensor

    Sensor sentuh atau touch sensor adalah sensor elektronik yang bisa mendekeksi sentuhan. Sensor sentuh ini beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Sensor sentuh ini semakin banyak digunakan dan sudah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.
Jenis - jenis touch sensor :
1. Sensor Kapasitif

pengertian sensor sentuh

    Sensor kapasitif adalah sensor sentuh yang sangat populer saat ini, hal ini dikarenakan sensor kapasitif lebih kuat, tahan lama serta mudah digunakan dan harganya pun yang relatif lebih murah dari sensor resistif. Smartphone saat ini sudah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

    Sensor kapasitif ini memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif biasanya Indium Tin Oxide (ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus atau sarung khusus yang mempunyai sifat konduktif.

    Pada saat jari menyentuh layar, akan terjadi perubahan medan listrik pada layar sentuh tersebut dan lalu direspon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan direspon oleh layar sensor kapasitif apabila menggunakan bahan non-konduktif sebagai pelantara jari tangan dan layar sentuh tersebut.

2. Sensor Resistif
pengertian sensor sentuh
    Sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini bisa beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

    Sensor sentuh ini terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau cela yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini umumnya terbuat dari sebuah film. Film-film pada umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan transparan. Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari ataupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah.

    Sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut serta memberikan signal ke prosesor untuk melakukan proses selanjutnya.
3. Multi Touchpengertian sensor sentuh
    Multi touch layar sentuh merupakan teknologi layar sentuh yang sudah mengalami perkembangan. Kelebihan yang dimiliki oleh layar sentuh ini yaitu dapat disentuh oleh lebih dari satu jari. Multi touch ini dapat disentuh hingga puluhan jari dari beberapa orang berbeda sekaligus secara bersamaan.

    Multi touch ini dapat digunakan untuk mengecilkan, membesarkan, mengubah posisi dan bahkan memindahkan posisi suatu objek pada layar monitor seperti foto atau games. Multi touch ini umumnya banyak digunakan pada komputer, handphone, MP3 player dan lain sebagainya.

4. Surface Acoustic Wavepengertia sensor sentuh

    Untuk dapat mendeteksi kejadian pada permukaan layarnya, sistem teknologi ini biasanya menggunakan gelombang ultrasonik. Dalam monitornya terdapat dua tranduncer, yakni pengirim dan penerima sinyal ultrasonik. Bahkan dilengkapi juga dengan sebuah reflektor yang mempunyai fungsi untuk mencegah gelombang ultrasonik agar tetap berada pada area layar monitor.

    Kedua transducer tersebut dipasang pada empat sisi, dua vertikal dan dua horizontal. Jika panel touchnya tersentuh langsung, maka bagian dari gelombang tersebut nantinya ada yang diserap oleh sentuhan tersebut. Misalnya seperti terhalang oleh tangan, stylus dan masih banyak lagi. Sentuhan ini membuat adanya perubahan berupa gelombang yang dipancarkan. Perubahan gelombang ultrasonik yang sudah terjadi kemudian akan diterima oleh receiver dan diterjemahkan langsung dalam bentuk pulsa listrik.

    Lalu informasi sentuhan ini akan mengalami perubahan menjadi suatu data yang akan diteruskan ke controller untuk diproses secara lebih lanjut. Data yang dihasilkan oleh sentuhan tersebut yaitu data mengenai posisi tangan yang menyentuh sinyal ultrasonik secara langsung. Apabila hal ini dilakukan secara kontinyu, maka akan ada banyak sensor gelombang ultrasonik pada media yang sudah disentuhnya.

Cara Kerja dan Komponen Layar Sentuh :

    Layar sentuh umumnya mempunyai sensor sentuh, pengontrol dan driver perangkat lunak sebagai tiga komponen utama. Layar sentuh diperlukan untuk dikombinasikan dengan tampilan dan PC untuk membuat sistem layar sentuh.

1. Sensor Sentuh
    Sensor sentuh umumnya mempunyai arus lsitrik atau sinyal melewatinya serta menyentuh layar menyebabkan perubahan sinyal. Perubahan ini digunakan untuk menentukan lokasi sentuhan layar

2. Driver Perangkat Lunak
    Driver perangkat lunak ini memungkinkan komputer dan layar sentuh untuk bekerja bersama. Ia memberi tahu kepada OS cara berinteraksi informasi acara sentuh yang dikirm dari pengontrol.

3. Pengendali (Controller)
    Pengendali (Controller) akan dihubungkan antara sensor sentuh dan PC. Dibutuhkan informasi dari sensor dan menerjemahkannya untuk memahami PC.  Pengendali atau Controller ini menentukan jenis koneksi apa yang dibutuhkan.

d. Breadboard

    Breadboard Arduino adalah sejenis papan roti yang biasanya digunakan untuk membuat prototype rangkaian elektronik. Beberapa orang kadang menyebutnya project board atau bahkan  protoboard (prototype board). Pada dasarnya breadboard adalah board yang digunakan untuk membuat rangkaian elektronik tanpa harus merepotkan pengguna untuk menyolder. Biasanya papan breadboard ini digunakan untuk membuat rangkaian elektronik sementara untuk tujuan uji coba atau prototype.

Fungsi Breadboard :

    Kegunaan breadboard yaitu sebagai media penghantar (konduktor listrik) sekaligus tempat kabel jumper dilekatkan. Sehingga arus dari satu komponen bisa terdistribusi dengan baik sesuai keinginan ke komponen lain tanpa harus merepotkan pengguna untuk melakukan penyolderan atau melakukan bongkar pasang.

    Salah satu kelebihan tersendiri dari penggunaan breadboard adalah komponen-komponen yang telah dirakit tak akan rusak dan mudah untuk dibongkar pasang. Ini karena papan breadboard merupakan papan tanpa solder (solderless).
gambar breadboard

Cara Kerja Breadboard :

    Breadboard bisa dideskripsikan sebagai papan yang memiliki lubang koneksi berdasarkan pola tertentu. Untuk menghubungkan antara satu lubang dengan lubang yang lain, maka di bagian bawah lubang tersebut terdapat logam konduktor listrik yang diposisikan secara khusus. Ini berguna untuk memudahkan pengguna dalam membuat rangkaian. Logam konduktor yang ada di dalam breadboard umumnya seperti ini:

Cara Kerja Breadboard

Kira-kira posisi logam jalur breadboard bisa digambarkan sebagai berikut:

prinsip kerja breadboard

Berdasarkan gambar di atas, fungsi dari masing-masing jalur koneksi pada breadboard dengan keterangan warnanya yaitu sebagai berikut:
  • Jalur warna merah, digunakan untuk menempatkan pin 5V atau kutub positif dari arduino untuk dihubungkan ke kutub positif komponen lain.
  • Jalur warna biru, digunakan untuk menempatkan pin GND atau kutub negatif dari arduino untuk dihubungkan ke kutub negatif komponen lain.
  • Jalur warna hijau, digunakan untuk menempatkan pin digital dari Arduino untuk dihubungkan ke komponen lain.
Selain itu, di bagian tengah papan breadboard terdapat ruang kosong yang masing-masing pinggirannya terdapat ujung jalur vertikal. Fungsi dari ruang kosong ini adalah untuk menancapkan langsung ic component.

Jenis-jenis Breadboard

Beberapa ukuran breadboard yang tersedia di pasaran antara lain:
  • Mini Breadboard, yaitu jenis yang paling kecil diantara semua breadboard dan memiliki sekitar 170 titik koneksi.
mini breadboard
  • Medium Breadboard, yaitu jenis breadboard ukuran sedang yang kadang juga disebut half breadboard karena memiliki ukuran dan jumlah titik koneksinya setengah dari jumlah titik koneksi breadboard ukuran besar. Yaitu 400 titik koneksi.
medium breadboard
  • Large Breadboard, yaitu jenis yang ukurannya paling besar diantara semua jenis breadboard dan memiliki sekitar 830 titik koneksi.
large breadboard

 

e. Motor Servo

     Motor servo adalah jenis motor listrik yang dalam proses kerjanya, menggunakan sistem closed loop. Jadi, motor ini bekerja dengan mekanisme servo. Dimana aktuator putar (motor) pada perangkat tersebut dibuat dengan sistem umpan balik sehingga bagian dari poros motor dan sudutnya dapat diatur dengan mudah.

    Teknologi closed loop tertutup, juga memungkinkan motor untuk dapat mengendalikan akselerasi dan kecepatannya dengan tingkat keakuratan yang tinggi. Kemudian motor listrik tersebut dapat memutar dan mendorong objek dengan presisi yang tinggi melebihi motor biasa. Kontrol servo inilah yang menjadi keutamaan dan membedakannya dari motor jenis lain.



1. f. Light Emitting Diode (LED)

    LED adalah suatu semikonduktor yang memancarkan cahaya, LED mempunyai kecenderungan polarisasi. LED mempunyai kutub positif dan negatif (p-n) dan hanya akan menyala bila diberikan arus maju. Ini dikarenakan LED terbuat dari bahan semikonduktor yang hanya akan mengizinkan arus listrik mengalir ke satu arah dan tidak ke arah sebaliknya. Bila LED diberikan arus terbalik, hanya akan ada sedikit arus yang melewati LED. Ini menyebabkan LED tidak akan mengeluarkan emisi cahaya.


 



g. Buzzer

    Buzzer Arduino adalah salah satu komponen yang biasa dipadukan dalam rangkaian elektronik. Apabila kamu pernah mendengar ada bunyi beep-beep pada perangkat elektronik, maka itu adalah suara buzzer. Penggunaan buzzer biasanya ditemukan pada meteran listrik yang menggunakan pulsa, oven, sepeda motor, jam alarm, bel rumah, suara input keypad, bel sepeda, dan sebagainya. Namun untuk buzzer yang digunakan pada Arduino bukanlah jenis yang sembarangan. Buzzer pada Arduino haruslah memiliki tegangan 5 volt ke bawah. 

h. Arduino

    Arduino adalah kit elektronik atau papan rangkaian elektronik open source yang di dalamnya terdapat komponen utama yaitu sebuah chip mikrokontroler dengan jenis AVR dari perusahaan Atmel. Arduino yang kita gunakan dalam praktikum ini adalah Arduino Uno yang menggunakan chip AVR ATmega 328P. Dalam memprogram Arduino, kita bisa menggunakan komunikasi serial agar Arduino dapat berhubungan dengan komputer ataupun perangkat lain.

Adapun spesifikasi dari Arduino Uno ini adalah sebagai berikut :

 

Arduino Uno

Bagian-bagian arduino uno:


i. Potensiometer

    Potensiometer (POT) adalah salah satu jenis Resistor yang Nilai Resistansinya dapat diatur sesuai dengan kebutuhan rangkaian elektronika ataupun kebutuhan pemakainya. Sebuah Potensiometer (POT) terdiri dari sebuah elemen resistif yang membentuk jalur (track) dengan terminal di kedua ujungnya. Sedangkan terminal lainnya (biasanya berada di tengah) adalah Penyapu (Wiper) yang dipergunakan untuk menentukan pergerakan pada jalur elemen resistif (Resistive). Pergerakan Penyapu (Wiper) pada Jalur Elemen Resistif inilah yang mengatur naik-turunnya Nilai Resistansi sebuah Potensiometer.
Simbol dan bentuk Potensiometer dapat dilihat :

Bentuk dan Simbol Potensiometer

Jenis Potensiometer:
1. Potensiometer Slider
    Potensiometer geser, atau pot geser, dirancang untuk mengubah nilai resistansi kontaknya dengan gerakan linier dan dengan demikian terdapat hubungan linier antara posisi kontak penggeser dan resistansi output.
Potensiometer Geser

2. Potensiometer Rotary
    Potensiometer putar (tipe yang paling umum) memvariasikan nilai resistifnya sebagai hasil dari pergerakan sudut. Memutar kenop atau dial yang terpasang pada poros menyebabkan penyeka internal menyapu sekitar elemen resistif melengkung. Penggunaan potensiometer putar yang paling umum adalah pot kontrol volume.


Potensiometer Rotary

3. Potensiometer Trimmer
    Potensiometer preset atau trimmer adalah potensiometer tipe "set-and-forget" kecil yang memungkinkan penyesuaian yang sangat halus atau sesekali mudah dilakukan ke rangkaian, (misalnya untuk kalibrasi). Potensiometer preset putar satu putaran adalah versi mini dari variabel resistor standar yang dirancang untuk dipasang langsung pada papan rangkaian tercetak dan disesuaikan dengan menggunakan obeng berbilah kecil atau alat plastik serupa.



Potensiometer Trimmer atau Preset

j. Komponen lainnya

    a. PWM (Pulse Width Modulation)

       PWM (Pulse Width Modulation) adalah salah satu teknik modulasi dengan mengubah lebar pulsa (duty cylce) dengan nilai amplitudo dan frekuensi yang tetap. Satu siklus pulsa merupakan kondisi high kemudian berada di zona transisi ke kondisi low. Lebar pulsa PWM berbanding lurus dengan amplitudo sinyal asli yang belum termodulasi.

      Pada board Arduino Uno, pin yang bisa dimanfaatkan untuk PWM adalah pin yang diberi tanda tilde (~), yaitu pin 3, 5, 6, 9, 10, dan pin 11. Pin-pin tersebut merupakan pin yang bisa difungsikan untuk input analog atau output analog. Oleh sebab itu, jika akan menggunakan PWM pada pin ini, bisa dilakukan dengan perintah analogWrite();

    PWM pada arduino bekerja pada frekuensi 500Hz, artinya 500 siklus/ketukan dalam satu detik. Untuk setiap siklus, kita bisa memberi nilai dari 0 hingga 255. Ketika kita memberikan angka 0, berarti pada pin tersebut tidak akan pernah bernilai 5 volt (pin selalu bernilai 0 volt). Sedangkan jika kita memberikan nilai 255, maka sepanjang siklus akan bernilai 5 volt (tidak pernah 0 volt). Jika kita memberikan nilai 127 (kita anggap setengah dari 0 hingga 255, atau 50% dari 255), maka setengah siklus akan bernilai 5 volt, dan setengah siklus lagi akan bernilai 0 volt. Sedangkan jika jika memberikan 25% dari 255 (1/4 * 255 atau 64), maka 1/4 siklus akan bernilai 5 volt, dan 3/4 sisanya akan bernilai 0 volt, dan ini akan terjadi 500 kali dalam 1 detik.


Siklus Sinyal PWM pada Arduino

    b. Analog to Digital Converter

    ADC atau Analog to Digital Converter merupakan salah satu perangkat elektronika yang digunakan sebagai penghubung dalam pemrosesan sinyal analog oleh sistem digital. Fungsi utama dari fitur ini adalah mengubah sinyal masukan yang masih dalam bentuk sinyal analog menjadi sinyal digital dengan bentuk kode-kode digital. Ada 2 faktor yang perlu diperhatikan pada proses kerja ADC yaitu kecepatan sampling dan resolusi.
    
    Kecepatan sampling menyatakan seberapa sering perangkat mampu mengkonversi sinyal analog ke dalam bentuk sinyal digital dalam selang waktu yang tertentu. Biasa dinyatakan dalam sample per second (SPS). Sementara Resolusi menyatakan tingkat ketelitian yang dimilliki. Pada Arduino, resolusi yang dimiliki adalah 10 bit atau rentang nilai digital antara 0 - 1023. Dan pada Arduino tegangan referensi yang digunakan adalah 5 volt, hal ini berarti ADC pada Arduino mampu menangani sinyal analog dengan tegangan 0 - 5 volt.

    Pada Arduino, menggunakan pin analog input yang diawali dengan kode A( A0- A5 pada Arduino Uno). Fungsi untuk mengambil data sinyal input analog menggunakan analogRead(pin);


4. Hardware dan Vidio

Simulasi Tempat Sampah Pintar :
    

Gambar Tempat Sampah Pintar :





5. Flow Chart



6. Listing Program

ARDUINO ULTRASONIK

#include <LiquidCrystal.h>
LiquidCrystal lcd(10, 9, 7, 6, 5, 4) ;

const int TRIG_PIN = 12;  // pin untuk sensor ultrasonik trigger
const int ECHO_PIN = 11;  // pin untuk sensor ultrasonik echo

const int BUZZER_PIN = 8;  // pin untuk buzzer


long duration, jarak;  // variabel untuk menyimpan pengukuran jarak
bool personDetected = false;  // variabel untuk menyimpan apakah seseorang telah terdeteksi oleh sensor inframerah
int berat;  // variabel untuk menyimpan pengukuran berat



void setup() {
 
  pinMode(TRIG_PIN, OUTPUT);  // set pin trigger sebagai output
  pinMode(ECHO_PIN, INPUT);  // set pin echo sebagai input
  pinMode(BUZZER_PIN, OUTPUT);  // set pin buzzer sebagai output
 
  lcd.begin(16, 2);  // inisialisasi LCD
}

void loop() {
  // kode sensor ultrasonik
  digitalWrite(TRIG_PIN, LOW);
  delayMicroseconds(2);
  digitalWrite(TRIG_PIN, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_PIN, LOW);
  duration = pulseIn(ECHO_PIN, HIGH);
  jarak= ((duration*0.034)/2);  // hitung jarak dalam cm
  lcd.clear();
  lcd.print("jarak =");
  lcd.print(jarak);
  if (jarak < 10) {  // jika sampah kurang dari 10 cm
    digitalWrite(BUZZER_PIN, HIGH);  // nyalakan buzzer
    lcd.clear();
    lcd.print("Sampah Penuh");
    lcd.setCursor(0,1);
    lcd.print("jarak =");
    lcd.print(jarak);
    delay (1000);
  } else {
    digitalWrite(BUZZER_PIN, LOW);  // matikan buzzer
  }

  Serial.print("jarak = ");
  Serial.print(jarak);
  Serial.println(" cm");
  delay(200);

 
}

ARDUINO INFRARED DAN TOUCH SENSOR
#include <Servo.h> // Library servo

const int irSensor = 8; // Pin sensor infra red
const int touchSensor = 6; // Pin sensor touch
const int servoTop = 7; // Pin servo untuk membuka pintu atas tong sampah
const int servoBottom = 5; // Pin servo untuk membuka pintu bawah tong sampah

Servo topServo; // Inisialisasi objek servo untuk pintu atas
Servo bottomServo; // Inisialisasi objek servo untuk pintu bawah

void setup() {
  pinMode(irSensor, INPUT); // Set pin sensor infra red sebagai input
  pinMode(touchSensor, INPUT); // Set pin sensor touch sebagai input
  topServo.attach(servoTop); // Hubungkan servo ke pin 7
  bottomServo.attach(servoBottom); // Hubungkan servo ke pin 5
  topServo.write(0); // Servo menutup pintu atas tong sampah
  bottomServo.write(0); // Servo menutup pintu bawah tong sampah
}

void loop() {
  int irValue = digitalRead(irSensor); // Baca nilai dari sensor infra red
  int touchValue = digitalRead(touchSensor); // Baca nilai dari sensor touch

  if (irValue == HIGH) { // Jika sensor infra red mendeteksi orang
    topServo.write(90); // Servo membuka pintu atas tong sampah
    delay(1000); // Tunggu sebentar sebelum menutup pintu atas
    topServo.write(0); // Servo menutup pintu atas tong sampah
  }

  if (touchValue == HIGH) { // Jika sensor touch aktif
    bottomServo.write(90); // Servo membuka pintu bawah tong sampah
    delay(1000); // Tunggu sebentar sebelum menutup pintu bawah
    bottomServo.write(0); // Servo menutup pintu bawah tong sampah
  }
}

7. Hasil dan Pembahasan

 Tempat sampah otomatis ini mempunyai prinsip kerja yaitu ketika sensor infrared yang berfungsi sebagai pembuka dan penutup tempat sampah mendeteksi adanya tangan maka motor servo akan bergerak membuka tutup sampah dan didelay sebelum ditutup kembali. Ketika sampah dalam keadaan penuh maka sensor ultrasonik yang berada dibelakang tempat sampah akan mendeteksi pada jangkauan jarak 0 – 10 cm dan akan membuat buzzer berbunyi. Apabila pada jangkauan jarak tersebut tidak terdeteksi sampah maka buzzer tidak akan berbunyi. Pembacaan pada LCD pada saat tidak ada sampah yaitu “MASUKKAN SAMPAH” dan pada saat sampah penuh yaitu "SAMPAH PENUH".

8. Referensi

Imran, A., & Rasul, M. (2020). Pengembangan Tempat Sampah Pintar Menggunakan Esp32. Jurnal Media Elektrik17(2), 2721–9100. https://ojs.unm.ac.id/mediaelektrik/article/view/14193

Ma’arif, R. A., Fauziah, & Hayati, N. (2019). Sistem Monitoring Tempat Sampah Pintar Secara Real-time Menggunakan Metode Fuzzy Logic Berbasis IOT. Jurnal Infomedia4(2), 69–74. http://e-jurnal.pnl.ac.id/index.php/infomedia/article/view/1571

Fatmawati, K., Sabna, E., & Irawan, Y. (2020). Rancang Bangun Tempat Sampah Pintar Menggunakan Sensor Jarak Berbasis Mikrokontroler Arduino. Riau Journal Of Computer Science6(2), 124–134.

Mufti, & Indra. (2016). Rancang Bangun Tempat Sampah Pintar Menimbang Dan Mengenali Jenis Sampah Pada Bank Sampah Budi Luhur. Budi Luhur Information Technology13, 1–6.

Wuryanto, A., Hidayatun, N., Rosmiati, M., & Maysaroh, Y. (2019). Perancangan Sistem Tempat Sampah Pintar Dengan Sensor HCRSF04 Berbasis Arduino UNO R3. Paradigma - Jurnal Komputer Dan Informatika21(1), 55–60. https://doi.org/10.31294/p.v21i1.4998

Yunus, M. (2018). Rancang Bangun Prototipe Tempat Sampah Pintar Pemilah Sampah Organik Dan Anorganik Menggunakan Arduino. Proceeding STIMA1(1), 340–343.


9. Link Download

File HTML                              Download
File rangkaian                         : Download
Listing program                      Download
File library sensor ultrasonik  Download
Datasheet relay                       : Download
Datasheet transistor                : Download
Datasheet motor dc                : Download
Datasheet dioda                     : Download
Datasheet buzzer                    : Download

Komentar

Postingan populer dari blog ini

Modul 4

Subchapter 6.2